
A Genetic Algorithm Application 
for Knapsack Problem in Java

Author: Ahmet Kaşif
E-Mail: ksfahmet@gmail.com



Foreword

The project is built on top of a base application[5] implemented in Java. The differences in 

implementation are shown below:

1. Fitness function of referred application was to converge 64 bit binary numbers to a pre-built chromosome. 

Our problem’s aim is to find optimal item combination which satisfy knapsack weight limit.
2. Elitism approach has been used in referred application, while we did not used it because the 

experimentations did not give good results.
3. Referred application used a number of iterations to stop, while it is updated with a maximum number of 

non-improving solutions implementation.



Knapsack Problem

Knapsack problem is one of the most famous NP-Hard problems. [3]

Given set of items, each with a weight and value, determine the number of each item to include in a 

collection so that the total weight is less than or equal to a given limit and the total value is as large as 

possible.

Application areas of this problem are generally resource allocation problems, which can be an economics 

problem, cryptography problem, computer science problem etc.



Algorithm



Chromosome encoding

Chromosomes are encoded using a byte array with a length of item size. Each byte (gene) represents if an 

item is selected or not.



Fitness Function

Fitness function is summation of values of items 

selected in the chromosome. If weight of the 

chromosome is above knapsack capacity, we 

update fitness level of that chromosome with -1. 

Problem is designed as a maximization problem, so 

bigger fitness means better.

F = ∑ values, if weight < knapsack capacity

F = -1, otherwise

fitness ← 0
weight ← 0
i ← 0

while i < chromosome size
if i. gene’s value is 1

fitness ← fitness + value of i. item
weight ← weight + weight of i. item

if weight - knapsack capacity > 0
fitness ← -1

return fitness



Algorithm and Dataset

A sample dataset[2] with its own optimal value and knapsack capacity has been used in this application, 

and it has been tried to converge to that optimal value while still keeping runtime fast.



population ← generatePopulation
sc ← 2 // max no-improvement iteration count

while sc > 0
int i ← 0
bestChromosome ← get best chromosome present in population
while i < populationSize

select 2 chromosomes from population using tournament selection method
apply crossover to selected chromosomes
apply mutation to crossover applied new chromosome
pass new chromosome into next generation

if bestChromosome fitness value = newPopulation’s best chromosome’s fitness value
sc ← sc -1

else 
sc ← 2

if bestChromosome fitness value < newPopulation’s best chromosome’s fitness value
bestChromosome ← newPopulation’s best chromosome



Generating a Chromosome

Chromosome generation is a random process which can produce chromosomes not satisfying knapsack 

limit rule. In order to overcome this problem, it is repeatedly started over until a feasible chromosome is 

produced. Below you can see the pseudocode of generation of one chromosome: 

weight ← knapsackLimit
while weight <= 0 // Repeat until a positive weight returns meaning we do not exceed knapsack limit

weight ← knapsackLimit
 for i ←0 & i < chromosomeSize

gene ← randomly assign 0 or 1
weight ← weight - weights[i] // Subtract added item’s weight from limit
i ← i + 1



Tournament Select Implementation

Tournament select has been implemented with tournament size of 5. Random 5 chromosome is selected 

from population and best of them is selected. It’s pseudocode is as follows:

population ← dedicate memory with a population of size tournamentSize
for i ←0 & i < tournamentSize

add random chromosome from population to chromosome
i ← i + 1

return best chromosome of these 5



Crossover Implementation

Crossover pseudocode can be seen below:

newChromosome ← dedicate memory for newChromosome
for all genes of two chromosomes

if random number > crossover rate
add chromosome1’s gene to newChromosome

else
add chromosome2’s gene to newChromosome

i ← i + 1
return newChromosome



Mutation Implementation

Mutation pseudocode can be seen below:

for all genes of two chromosomes
if random number < mutation rate

mutate chromosome gene by a new random value
i ← i + 1



Deciding on GA parameters

After implementing a basic running GA, next step is to determine which parameter values work best for 

the algorithm and to decide if we need to update any approach.

Each parameter has been decided using trial & error approach. Experiments have been made by running 

algorithm 100000 times and taking average of all results.

Population size, crossover rate, mutation rate, elitism presence and iteration limit of no-improvement has 

been tested.



Deciding on GA paremeters

Population Size: Experimentation started from 50 and it has been seen that reducing it does not affect 

optimality. After some number of trials, population size has been selected as 8 while looking for best 

optimality and average generation count. Below, you can see the comparison of population size 50 and 8:

Results for population size: 50

Results for population size: 8



Deciding on GA paremeters

Crossover Rate: Experimentation started from 0.5 as crossover rate it has been observed that going 

towards 0.9, gives better results in scale of 1/1000 and while there hasn’t been any gain on average 

generation count, running time is nearly %10 faster. Below you can see the comparison of crossover rates 

of 0.9 and 0.5:

Crossover rate of 0.9

Crossover rate of 0.5



Deciding on GA paremeters

Mutation Rate: Experimentation of mutation rate started from 0.015 and it has been seen that increasing 

mutation rate gave much better optimality rates while not having a big impact on running time and 

average generation count. Below you can see the comparison of mutation rates between 0.015 and 

0.064:

Mutation rate of 0.015

Mutation rate of 0.064



Deciding on GA parameters

Elitism presence: It is experimented if usage of elitism gives better optimality or runtime improvement 

and it is observed that usage of elitism gives poor results even if it shortens runtime. Below you can see 

the comparison between using elitism and not:

Results using elitism

Results not using elitism



Deciding on GA parameters

Stop Criteria: Maximum number of no-improvement iteration count has been selected as stop criteria 

instead of a more standard iteration count approach, because our policy to keep average generation 

count at check and increase runtime efficiency also. After implementation is done, we started from 5 as 

our maximum. Below you can see the comparison between iteration count 5 and 2:

Maximum no-improvement iteration as 5

Maximum no-improvement iteration as 2



Results

We have converged our results to %93.91 of optimal value present in the sample dataset as can be seen 

below. While better solutions could be obtained using bigger population sizes and increasing maximum 

no-improvement iteration limit, we have also kept runtime in check.

According to these solutions, it can be said that one can improve optimality while sacrificing from 

runtime efficiency or make application run faster while sacrificing optimality.

Below you can see the result of optimality and average generation count obtained using the parameters 

selected before:



Environment

Application is implemented in Java language. Application is tested on a linux machine with a processor of 

3.5 GHz of clock rate. It should also be repeated that, while time observed in milliseconds is subject to 

change in a more powerful machine, average generation count gives a machine-free point of view.



References

1. Knapsack Implementation using GA, 

http://www.dataminingapps.com/2017/03/solving-the-knapsack-problem-with-a-simple-genetic-

algorithm/

2. Dataset 8, https://people.sc.fsu.edu/~jburkardt/datasets/knapsack_01/knapsack_01.html

3. Knapsack problem, https://en.wikipedia.org/wiki/Knapsack_problem#Computational_complexity

4. http://www.sc.ehu.es/ccwbayes/docencia/kzmm/files/AG-knapsack.pdf

5. Base application, 

http://www.theprojectspot.com/tutorial-post/creating-a-genetic-algorithm-for-beginners/3

http://www.dataminingapps.com/2017/03/solving-the-knapsack-problem-with-a-simple-genetic-algorithm/
http://www.dataminingapps.com/2017/03/solving-the-knapsack-problem-with-a-simple-genetic-algorithm/
https://people.sc.fsu.edu/~jburkardt/datasets/knapsack_01/knapsack_01.html
https://en.wikipedia.org/wiki/Knapsack_problem#Computational_complexity
http://www.sc.ehu.es/ccwbayes/docencia/kzmm/files/AG-knapsack.pdf
http://www.theprojectspot.com/tutorial-post/creating-a-genetic-algorithm-for-beginners/3

